CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the October/November 2013 series

0620 CHEMISTRY

0620/32

Paper 3 (Extended Theory), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October / November 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	IGCSE – October/November 2013	0620	32

1	(a) C a	nd F			[1]
	(b) A				[1]
	(c) B				[1]
	(d) D				[1]
	(e) E				[1]
	(f) A a	nd D			[1]
					[Total: 6]
2	(a) (i)	two atoms per molecul	<u>e</u>		[1]
	(ii)	7e in outer shell or leve	el / same number of out	er electrons / need to gain on	e electron [1]
	(iii)	different number of end	ergy levels / different nu	mber of electrons	[1]
	(iv)		,		1
		halogen	solid, liquid or gas at room temperature	colour	
		chlorine	gas	yellow / yellow green / green	
		bromine	liquid	<u>brown</u> / red- <u>brown</u> / orange- <u>brown</u> not: red / orange	
		iodine	solid	black / grey / silver-grey / purple / violet NOT : blue-black	
		NOTE: one mark for ea	ach vertical column		[2]
	3nb	rect formula, AsF ₃ ops and 1bp around all 3 os and 1nbp around arse			[1] [1] [1]
	Ag((inc	reased) light increases Cl reacts with CuCl reased) light increases	the amount of silver (ar	-	[1] [1]

[Total: 11]

Page 3	Mark Scheme	Syllabus	Paper
	IGCSE – October/November 2013	0620	32

- 3 (a) (i) the (forward) reaction is endothermic [1]
 - (ii) none [1] volume of reactants and products the same [1]

ACCEPT: number of moles or molecules

- (iii) the reaction (between oxygen and nitric oxide) is <u>exothermic</u> [1] high temperatures push equilibrium to left / high temperatures decrease yield of products / low temperatures favour forward reaction [1]
- (iv) $4NO_2 + O_2 + 2H_2O \rightarrow 4HNO_3$ [2] not balanced = (1) only
- (v) (cost of) high amount of electricity / energy [1]
- (b) (i) contains more nitrogen [1]
 - (ii) photosynthesis [1] chlorophyll is catalyst / chlorophyll absorbs light [1] carbon dioxide and water react [1] to make glucose / carbohydrates / starch / sugar / named sugar [1]

[Total: 13]

4 (a) Any one of:

Fe₂O₃ + 3C \rightarrow 2Fe + 3CO 2Fe₂O₃ + 3C \rightarrow 4Fe + 3CO₂ Fe₂O₃ + 3CO \rightarrow 2Fe + 3CO₂ for correct equation (2) not balanced = (1) only

any four of:

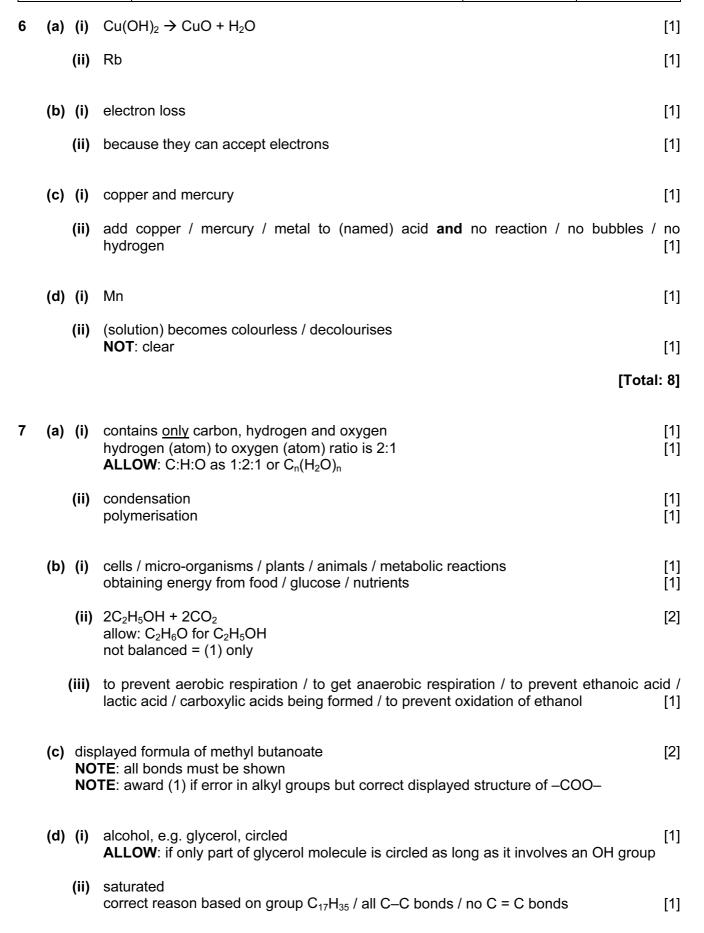
coke burns to form carbon dioxide / $C + O_2 \rightarrow CO_2$

this reacts with more carbon to form carbon monoxide / C + $CO_2 \rightarrow 2CO$

calcium carbonate decomposes to form calcium oxide and carbon dioxide / $CaCO_3 \rightarrow CaO + CO_2$

calcium oxide / calcium carbonate reacts with silica / silicon oxide / silicon(IV) oxide (in ore) to form calcium silicate / slag / CaO + SiO₂ \rightarrow CaSiO₃ or CaCO₃ + SiO₂ \rightarrow CaSiO₃ + CO₂

the reaction between carbon and oxygen is exothermic / produces heat / coke is used as a fuel / the slag floats on the (molten) iron / the slag and molten iron can be run off separately


[6]

Page 4	4	Mark Scheme	Syllabus	Paper
		IGCSE – October/November 2013	0620	32
(b) (i)	-	nhouse effect / CO ₂ is a greenhouse gas al warming / ice caps melting / suitable example		[1] [1]
(ii)		ing or combustion of charcoal produces carbon diox s use carbon dioxide (in photosynthesis)	kide	[1] [1]
(iii)	cath	ode reaction Fe³+ + 3e → Fe		[1]
	anode reaction $2O^{2-} \rightarrow O_2 + 4e$ not balanced = (1) only		[2]	
				[Total: 13]
	(a) because they have more than one oxidation state or valency / form ions with different charges			
		e two iron oxides (iron(III) oxide and iron(II) oxinds / iron forms iron(II) and iron(III) compounds	de) / iron forms	Fe ²⁺ and Fe ³⁺ [1]
(b) (i)	to re	move the precipitate / remove the silver(I) chromate	e(VI) / remove the	residue [1]
(ii)	(ii) to remove <u>soluble</u> impurities / remove named <u>soluble</u> salt e.g. potassium nitrate / remove reactants		nitrate / remove [1]	
(iii)	(iii) to dry solid / to remove water			[1]
(c) (i)	(c) (i) need one mole of potassium chromate(VI) for two moles of silver(I) nitrate / references to mole ratio		nitrate / correct [1]	
(ii)	NOT	s of AgNO ₃ needed is 170 × 0.2 × 0.1 = 3.4g E: if answer given is 34 they have omitted 0.1 OW: (1) ecf		[2]
(iii)	num	ber of moles of AgNO ₃ used = $0.02 \times 0.2 = 0.004$		[1]
	num	ber of moles of Ag ₂ CrO ₄ formed = 0.002		[1]
	mas	s of one mole of Ag ₂ CrO ₄ = 332g		
		s of Ag ₂ CrO ₄ formed = 0.664g		[1]

[Total: 11]

NOTE: use ecf when appropriate

Page 5	Mark Scheme	Syllabus	Paper
	IGCSE – October/November 2013	0620	32

Page 6	Mark Scheme	Syllabus	Paper
	IGCSE – October/November 2013	0620	32

(iii) salt / carboxylate / alkanoate (making) soap ACCEPT: detergent / washing	[1] [1]
` ,	at least one correct amide linkage –CONH– continuation shown at both ends of chain diagram showing three (different) amino acid residues	[1] [1] [1]

[Total: 18]